Metabolism of NAD⁺ in Nuclei of *Saccharomyces cerevisiae* during Stimulation of Its Biosynthesis by Nicotinamide

T. G. Gulyamova*, D. M. Ruzieva, S. M. Nasmetova, M. R. Shakirzyanova, and A. M. Kerbalaeva

Institute of Microbiology, Uzbekistan Academy of Sciences, ul. Abdully Kodiry 7B, Tashkent, 700128 Uzbekistan; fax: (998-712) 417-129; E-mail: imbasru@uzsci.net

Received December 13, 2000 Revision received May 18, 2001

Abstract—The activities of nuclear enzymes involved in NAD⁺ metabolism in *Saccharomyces cerevisiae* strain 913a-1 and its mutant 110 previously selected as an NAD⁺ producer were investigated. The presence of extracellular nicotinamide increased the total NAD⁺ pool in the cells and increased [³H]nicotinic acid incorporation; however, NAD⁺ concentration in isolated nuclei decreased slightly. The stimulating effect of nicotinamide on intracellular synthesis of NAD⁺ correlated with increases in ADP-ribosyl transferase, NAD⁺-pyrophosphorylase, and NAD⁺ase activities.

Key words: NAD+, NAD+-glycohydrolase, NAD+-pyrophosphorylase, ADP-ribose, ADP-ribosyl transferase

NAD⁺ is a substrate for reactions of poly- and mono-ADP-ribosylation of nuclear proteins and other macro-molecules [1]. It is also involved in DNA replication, cell proliferation, regulation of gene expression, maintenance of chromatin structure, and protection of DNA against damages. The final stage of NAD⁺ synthesis catalyzed by NAD⁺-pyrophosphorylase occurs in the nucleus. Degradation of NAD⁺ also involves nuclear enzymes NAD⁺-glycohydrolase and ADP-ribosyl transferase. Thus, it is possible that changes of NAD⁺ concentrations in the nucleus are a trigger mechanism regulating the activity of ADP-ribosylation, which utilizes NAD⁺ as a substrate [2, 3]. Thus, it is of interest to investigate microorganisms that can overproduce NAD⁺ from exogenous precursors, possibly due to altered regulation of its metabolism.

In the present study, we investigated changes in nuclear NAD⁺ turnover during induction of its synthesis in *S. cerevisiae* strains previously selected as NAD⁺ producers [4].

MATERIALS AND METHODS

Saccharomyces cerevisiae strain 913a-1, selected as an NAD⁺ producer, was cultivated at 30-32°C for 72 h with shaking.

Mutants were obtained using nitroso-N-methylurea. Cells cultivated for two days were treated with 0.1, 0.3, and 0.5% mutagen solution for 30, 60, 90, and 120 min. Nitroso-N-methylurea treated cells were seeded onto an agarose medium and cultivated at 28-30°C for 7 days. Producers among these mutants were selected by determining NAD⁺ content during submerged cell cultivation on the screening medium [4].

NAD⁺ content was assayed spectrophotometrically in cell and nuclear extracts using yeast alcohol dehydrogenase (Reanal, Hungary) in the presence of ethanol [5].

Nuclei were isolated from yeast cells as described previously [6]. The purity and intactness of the isolated nuclei were evaluated using several parameters: 1) the ratio DNA/RNA/protein of 1:0.4:5.1 corresponding to characteristics of purified nuclear preparations; 2) the activity of NAD⁺-pyrophosphorylase, which was about 20 μmol NAD⁺ per min per mg nuclear protein or higher [7]; 3) light microscopy of stained preparations.

NAD⁺ase activity was registered by the decrease of NAD⁺ content during incubation of isolated nuclei [8]. Unreacted NAD⁺ was measured by its reaction with 1 M KCN. One unit of NAD⁺ase activity corresponded to the amount of enzyme catalyzing cleavage of 0.1 nmol NAD⁺ at 37°C during 20 min.

NAD⁺-pyrophosphorylase activity was determined as described previously [9]. Briefly, aliquots of freshly isolated nuclei were incubated at 37°C for 20 min in medium

^{*} To whom correspondence should be addressed.

(total volume 0.8 ml) containing 0.3 ml 0.25 M glycylglycine-KOH buffer, pH 7.4, 0.5 μM ATP, 0.3 μM nicotinamide mononucleotide, 0.3 μM nicotinamide, 1.5 μM MgCl₂, and 1 mg of nuclear protein. One unit of NAD⁺-pyrophosphorylase activity corresponded to the amount of enzyme catalyzing cleavage of 1 μmol NAD⁺ during 20 min.

For the determination of basal ADP-ribosyl transferase activity, the isolated cell nuclei were resuspended in 5 ml of 0.1 M Tris-HCl buffer, pH 8.0, containing 40 mM KCl, 10 mM MgCl₂, 2 mM dithiothreitol, and 0.08 MBq/ml [14C]NAD⁺. The mixture was incubated at 37°C for 20 min, and the reaction was stopped by adding 3 ml of 20% trichloroacetic acid. The acid-insoluble material retained by Millipore filters was washed with trichloroacetic acid, the filters were dried, and the radioactivity entrapped into them was counted using a scintillation counter. The total enzyme activity was determined under similar conditions but in the presence of 0.5% Triton X-100 (v/v) and 10 U/ml DNase I. Specific radioactivity of [14C]NAD+ was reduced to 1.25 Ci/mol. ADP-ribosyl transferase activity was expressed as counts per min of [14C]NAD+ bound to the acid-insoluble material per mg nuclear protein. Incorporation of [3H]nicotinic acid was registered during 60 min at 1 mM concentration and specific radioactivity of 0.85 Ci/mol.

For the identification of ADP-ribose, the acid-insoluble fraction obtained after sedimentation of nuclei

labeled with [14C]adenine-NAD⁺ was dissolved in 0.1 M NaOH and neutralized by adding 0.1 M HCl and 0.5 M Tris-HCl buffer, pH 7.6, containing 200 mM MgCl₂. The mixture was incubated at 37°C for 30 min in the presence of one of the following enzymes (100 U/ml): nuclease from *Micrococcus* (grade VI) (Sigma, USA), snake venom phosphodiesterase, or proteinase K. After termination of the reactions, radioactivity was determined using the liquid scintillation counter [10].

RESULTS AND DISCUSSION

Cultivation of the initial strain and mutant 110 of *S. cerevisiae* in the medium containing 1 mM nicotinamide was accompanied by marked increase of intracellular NAD⁺ concentration in the steady state growth phase, whereas in the nuclei there was some decrease of the coenzyme concentration (Table 1).

Increase of proliferative activity of normal and transformed cells [11, 12] and DNA repair and replication [13, 14] are accompanied by the exhaustion of the total pool of pyridine dinucleotides. The decrease of NAD⁺ level induced by DNA damaging agents does not represent the metabolic consequence of inhibition of synthesis or activation of NAD⁺ase. It occurs due to the activation of ADP-ribosyl transferase in the nucleus. It is generally accepted that synthesis of poly(ADP)-ribose is responsi-

Table 1. The effect of exogenous nicotinamide (1 mM) on total and nuclear content of NAD ⁺ and t	he activity of
nuclear enzymes of NAD ⁺ metabolism	

S. cerevisiae strain	NAD ⁺ content, mmol per mg protein		Enzyme activity, U/mg protein		[³H]nicotinic acid incorporation (cpm/mg protein)
	total	nuclear	NAD ⁺ ase	NAD ⁺ -pyro- phosphorylase	× 10 ³
913a-1 control + nicotinamide	0.021 0.037	0.018 0.012	0.64 0.96	3.8 4.6	190 160
Mutant 110 control + nicotinamide	0.042 0.089	0.016 0.013	0.72 0.97	2.8 6.4	170 340

Table 2. Basal and total ADP-ribosyl transferase activity during induction of NAD+ synthesis by nicotinamide

	ADP-ribosyl transferase activity (cpm [14C]adenine per mg protein) × 10 ³				
S. cerevisiae strain	contro	+ nicotinamide			
	basal	total	basal	total	
913a-1	70	101	121	148	
713a-1	70	101	121	140	
Mutant 110	84	115	100	110	

Table 3. Identification of [14C]ADP-ribose in nuclei of *S. cerevisiae* cells

Sample	[¹⁴ C]ADP- ribose, cpm/mg protein	Degradation, %
Control Sequential treatment with:	4375	0
DNase proteinase K phosphodiesterase	3692 3825 48	12.8 29.6 98.9

ble for the decrease in NAD⁺ [12]. In HeLa cells, a half-turnover period of NAD⁺ is about 1 h and degradation of 95% of the coenzyme in the nucleus involves ADP-ribosyl transferase [14]. Consequently, it is reasonable to suggest that changes in biosynthesis of ADP-ribose should correlate with the changes in NAD⁺ concentration. We found that the decrease of nuclear concentration of NAD⁺ during stimulation of its synthesis in cells of the initial and mutant 110 strains of *S. cerevisiae* by nicotinamide correlated with the increase of NAD⁺-pyrophosphorylase and NAD⁺ase activities in the nuclei (Table 1).

In addition to the increase of intracellular concentration of NAD⁺, we also detected an increase of basal and total ADP-ribosyl transferase activity determined by the incorporation of [¹⁴C]adenine from NAD⁺ into native and DNase treated nuclei of *S. cerevisiae* cells (Table 2).

Table 3 shows that [14C]adenine-NAD⁺ labeled material of yeast nuclei was almost completely degraded by enzymatic hydrolysis with snake venom phosphodiesterase, whereas DNase and proteinase were ineffective.

This suggests that the labeled product is ADP-ribose bound to nuclear proteins.

Thus, the induction of NAD⁺ synthesis in yeast cell producers is characterized by the activation of nuclear metabolism of this coenzyme. The activation of NAD⁺-pyrophosphorylase increases the rate of NAD⁺ biosynthesis, whereas NAD⁺ase and ADP-ribosyl transferase utilize this coenzyme. The latter is accompanied by the increased incorporation of labeled ADP-ribose. This suggests an increase of protein modification in the nucleus that may reflect structure—function changes of the chromatin.

REFERENCES

- Sugimura, T., and Miwa, M. (1994) Mol. Cell. Biochem., 138, 5-12.
- 2. Shall, S. (1995) Biochimie, 77, 313-318.
- Mulyavko, N. V. (1985) Interaction between NAD⁺ in chicken liver nuclei and ADP-ribosylation of histones: Candidate's dissertation [in Russian], Kiev.
- Shakirzyanova, M. R., Gulyamova, T. G., Gulyamova, N. Kh., and Khalmuradov, A. G. (1992) *Dokl. RAN*, 323, 165-168.
- 5. Asatiani, V. S. (1969) *Enzymatic Methods of Analysis* [in Russian], Nauka, Moscow, pp. 117-125.
- Mohberg, J., and Rusch, H. (1971) Exp. Cell Res., 305, 66-69.
- 7. Bilai, O. I. (1973) *Methods of Experimental Mycology* [in Russian], Naukova Dumka, Kiev.
- 8. Kaplan, W. O., and Ciotti, M. M. (1968) in *Methods in Enzymology*, Academic Press, N. Y., p. 144.
- Atkinson, M., and Jackson, V. (1951) Nature, 192, 946-951.
- Farzahen, F., Shall, S., and Johnstone, A. D. (1985) FEBS Lett., 189, 62-66.
- 11. Berger, N. A., Whitacre, C. M., Hashimoto, H., Berger, S. J., and Chatterjee, S. (1985) *Biochimie*, 77, 364-367.
- 12. Shall, S. (1989) Biochem. Soc. Trans., 17, 123-134.
- 13. Shall, S. (1984) Adv. Radiat. Biol., 11, 1-69.
- 14. Sato, M. S., Poirier, G. G., and Lindahl, T. (1994) *Biochemistry*, **33**, 7099-7106.